Fire carbon emissions over Equatorial Asia reduced by shortened dry seasons

Wang, S., B. He, H. W. Chen, D. Chen, Y. Chen, W. Yuan, F. Shi, J. Duan, W. Wu, T. Chen, L. Guo, Z. Zhong, W. Duan, Z. Li, W. Jiang, L. Huang, X. Hao, R. Tang, H. Liu, Y. Zhang, and X. Xie

2023

npj Climate and Atmospheric Science

Fire carbon emissions over Equatorial Asia (EQAS) play a critical role in the global carbon cycle. Most regional fire emissions (89.0%) occur in the dry season, but how changes in the dry-season length affect the fire emissions remains poorly understood. Here we show that, the length of the EQAS dry season has decreased significantly during 1979–2021, and the delayed dry season onset (5.4 ± 1.6 (± one standard error) days decade−1) due to increased precipitation (36.4 ± 9.1 mm decade−1) in the early dry season is the main reason. The dry season length is strongly correlated with the length of the fire season. Increased precipitation during the early dry season led to a significant reduction (May: −0.7 ± 0.4 Tg C decade−1; August: −12.9 ± 6.7 Tg C decade−1) in fire carbon emissions during the early and peak fire season. Climate models from the Coupled Model Intercomparison Project Phase 6 project a continued decline in future dry season length in EQAS under medium and high-emission scenarios, implying further reductions in fire carbon emissions.

Wang, S., B. He, H. W. Chen, D. Chen, Y. Chen, W. Yuan, F. Shi, J. Duan, W. Wu, T. Chen, L. Guo, Z. Zhong, W. Duan, Z. Li, W. Jiang, L. Huang, X. Hao, R. Tang, H. Liu, Y. Zhang, and X. Xie, 2023: Fire carbon emissions over Equatorial Asia reduced by shortened dry seasons. npj Climate and Atmospheric Science, 6, 129, https://doi.org/10.1038/s41612-023-00455-7.